Skip navigation
The Power Plant

Dr. B. J. Baliga Awarded 2014 IEEE Medal of Honor

“B. Jayant Baliga is considered the world’s preeminent power semiconductor scientist. His development of the insulated gate bipolar transistor (IGBT) transformed the way we utilize power and has improved the comfort, convenience, and health of billions of people around the world while reducing environmental impact. Dr. Baliga’s invention of the IGBT in 1979 and subsequent development and commercialization while with General Electric led to the world’s most important semiconductor switch.

Dr. Baliga combined the physics of bipolar and metal-oxide semiconductor field-effect transistor (MOSFET) technologies to create a device far superior to both, resulting in lighter and more efficient power converters. His leadership and perseverance in convincing General Electric to continue investing in IGBT development and his ability to address and overcome design and technology challenges were critical to the IGBT’s successful commercialization. IGBTs enabled the creation of cost-effective and efficient automobile electronic ignition systems that have reduced gasoline consumption by an estimated 1.1 trillion gallons, resulting in reduction of carbon dioxide emissions by 22 trillion pounds.

The IGBT also made possible the adjustable speed motor drives for refrigeration and air conditioning and the miniature electronic ballast in energy-saving compact fluorescent bulbs. The improved efficiency of these devices due to IGBTs has resulted in a reduction in energy usage of over 50,000 terawatt hours and 56 trillion pounds in carbon dioxide emissions. IGBTs are also an essential component of compact and lightweight portable defibrillators used to control the shock delivered to victims of cardiac arrest and save the lives of hundreds of thousands of people each year. All commercially available electric and hybrid vehicles use IGBTs to control the transfer of power from the battery to the electric motors. IGBTs are also important in wind- and solar-power generation stations, converting electricity to power suitable for consumer and industrial use.

Dr. Baliga’s pioneering contributions include the “Baliga Figure of Merit” for evaluating the pros and cons of materials and devices operating in high-frequency circuits. He was able to demonstrate that wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) could provide significant performance improvements over silicon for power electronics. His SiC power device innovations have been commercialized since 2005 by numerous companies for use in solar inverters and motor control applications. Dr. Baliga is also responsible for four successful spin-off companies from his research at North Carolina State University. Inventions that have been commercialized by these companies include the TMBS rectifier used as bypass diodes for solar panels, the super-linear RF silicon power MOSFETs used in cell-phone base station amplifiers, and MOSFETs used to deliver power to microprocessors and graphics chips in laptops and servers.

An IEEE Life Fellow, Dr. Baliga received the 2010 National Medal of Technology and Innovation from President Barrack Obama, the highest honor conferred by the U.S. Government to an engineer. Dr. Baliga is currently a Distinguished University Professor at North Carolina State University, Raleigh.”

Additional information on Dr. Baliga is included in the May issue of the IEEE Spectrum.

A graduate of the Indian Institute of Technology, Baliga received his Ph.D. from Rensselaer Polytechnic Institute in Troy, NY. After graduating from RPI he joined the General Electric Research Laboratory where he invented the IGBT. The initial IGBT design was too slow for some applications, but Baliga developed a technique to speed it up and make it more useful for many applications. In August 1988 he moved to North Carolina State University where he has taught and done research for a quarter of a century.

Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.