Power Electronics

Strong Semiconductor Growth Forecast for Electric Vehicle DC Fast-Charging Stations

Revenue from semiconductors used in EV charging stations reached $44 million in 2014 and is expected to grow at a compound annual growth rate (CAGR) of 39 percent to reach $233 million in 2019.

The global market for semiconductors used in electric vehicle (EV) charging stations for plug-in hybrid (PH) and battery electric vehicles (BEV) will continue to expand in the coming years, providing significant growth opportunities to semiconductor manufacturers. Revenue from semiconductors used in EV charging stations reached $44 million in 2014 and is expected to grow at a compound annual growth rate (CAGR) of 39 percent to reach $233 million in 2019, according to IHS Inc.

"Fast charging is a necessary step to the strong adoption of EVs and a higher power rating is required to support these shorter charging times," said Noman Akhtar, industrial semiconductors analyst for IHS Technology. "Electric vehicle charging stations with higher ratings require more power semiconductors, especially discrete semiconductor components, which will lead to increased semiconductor revenue growth."

In 2014, the average price for semiconductor components in a level-two charging station -- which could charge a battery in about five hours -- was $143. By comparison, semiconductor components used in the latest fast-charging direct-current (DC) chargers now cost more than $1,000; however, they are capable of charging a vehicle battery to 80 percent of capacity in just 15 minutes.

Average selling prices of semiconductors used in communication modules are expected to increase over time, as the industry moves toward single system-on-chip (SoC) solutions that not only provide faster control, but also include the memory required for secure communications and other applications. "Better communication between the utility and the charger improves the stability of the electric grid," Akhtar said. "The latest developments in communication interface ICs enable more secure and reliable information transfer."

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish